inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tricaesium tetrachloridozincate(II) chloride

Karla Fejfarova,^a* Rachid Ouarsal,^b Brahim El Bali,^c Michal Dušek^a and Mohammed Lachkar^b

^aInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic, ^bLaboratoire d'Ingénierie des Matériaux Organométalliques et Moléculaires, Département de Chimie, Faculté des Sciences, BP 1796 Fès-Atlas, 30000 Fès, Morocco, and ^cDepartment of Chemistry, Faculty of Sciences, University Mohammed 1st, PO Box 717, 60000 Oujda, Morocco

Correspondence e-mail: fejfarov@fzu.cz

Key indicators

Single-crystal X-ray study T = 292 KMean σ (n–Cl) = 0.001 Å R factor = 0.010 wR factor = 0.035 Data-to-parameter ratio = 20.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The crystal structure of Cs_3ZnCl_5 is isotypic with Cs_3CoCl_5 and Cs_3NiCl_5 . All atoms are located on crystallographic symmetry elements, Cs at m2m and 422, Zn at $\overline{4}2m$, and Cl at 4/m and m.

Received 12 February 2007 Accepted 30 March 2007

Comment

The structure of the title compound is isotypic with Cs₃CoCl₅ (Williams *et al.*, 1980) and Cs₃NiCl₅ (Sassmannshausen & Lutz, 1998). It is built up from ZnCl₄⁻ tetrahedra, between which Cs⁺ cations and Cl⁻ anions are located (Fig. 1). The structure can be considered to be composed of two types of layers lying parallel to (001) (Fig. 2). One type of layer (at $z = \frac{1}{4}$ and $\frac{3}{4}$) consists of isolated nearly regular ZnCl₄⁻ tetrahedra, with Cs⁺ cations lying between them. The Zn-Cl distance is 2.2584 (6) Å, which can be compared with the value of 2.253 Å reported for Cs₂ZnCl₄ (McGinnety, 1974). The second type of layer (at z = 0 and $\frac{1}{2}$) contains Cs⁺ cations forming rectangles and trapezia (Fig. 2). The Cl⁻ anion (Cl1) is located in the centre of each rectangle in such a way that, when the structure is viewed along the *c* direction, Cl⁻ lies exactly above atom Cs2 in the neighbouring layer (Fig. 2).

Atoms Cs1 and Cs2 are coordinated by eight and ten Cl atoms, respectively. The Cs-Cl distances lie between 3.4236 (6) and 3.6367 (6) Å for Cs1, and between 3.6232 (7)

Figure 1

The asymmetric unit of Cs₃ZnCl₅, with additional Cl atoms to complete the coordination of Zn. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $x, -y, \frac{3}{2} - z$; (ii) $1 - x, y, \frac{3}{2} - z$; (iii) $1 - x, -y, \frac{3}{2} - z$; (iii)

© 2007 International Union of Crystallography All rights reserved

а

and 3.8164 (6) Å for Cs2. The average distances of 3.503 and 3.778 Å for Cs1 and Cs2, respectively, are close to the corresponding values in the isotypic compound Cs_3CoCl_5 (3.502 and 3.726 Å; Williams *et al.*, 1980).

Experimental

Crystals of the title compound were obtained unintentionally in an experiment aimed at the preparation of a phosphate. Two solutions were combined, namely NaOH (2.5 mmol) and H_3PO_3 (2.5 mmol) in water (5 ml), and ZnCO₃ (2.5 mmol) and H_3PO_3 (1.5 mmol) in water (5 ml). The combined mixture was stirred for 8 h and the resulting solution was left to stand at room temperature for two weeks. Colourless lozenge-shaped crystals were deposited, which were filtered off and washed with a solution of ethanol–water (4:1 ν/ν). The chemical composition of the reported compound was confirmed by microprobe analysis.

Crystal data

 Cs_3ZnCl_5 $M_r = 641.4$ Tetragonal, *I4/mcm* a = 9.2421 (18) Å c = 14.4928 (15) Å V = 1237.9 (4) Å³

Data collection

Oxford Diffraction XCalibur2 CCD area-detector diffractometer Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2006) $T_{\rm min} = 0.103, T_{\rm max} = 0.290$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.010$ $wR(F^2) = 0.035$ S = 1.01374 reflections Mo K α radiation $\mu = 11.69 \text{ mm}^{-1}$ T = 292 K $0.20 \times 0.12 \times 0.05 \text{ mm}$

Z = 4

7208 measured reflections 374 independent reflections 349 reflections with $I > 3\sigma(I)$ $R_{\text{int}} = 0.023$

18 parameters	
$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^-$	

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *JANA2000*

Figure 2

A view of the unit-cell contents of Cs_3ZnCl_5 , with layers parallel to (001) highlighted. The $ZnCl_4^-$ anions are represented by tetrahedra.

(Petříček *et al.*, 2000); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *JANA2000*.

Financial support was provided by the Grant Agency of the Czech Republic (grant No. 202/05/0421).

References

Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Release 3.0c. Crystal Impact GbR, Bonn, Germany.

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

McGinnety, J. A. (1974). Inorg. Chem. 13, 1057-1061.

0

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.

Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Prague, Czech Republic.

Sassmannshausen, M. & Lutz, H. D. (1998). Acta Cryst. C54, 704–706.

Williams, G. A., Figgis, B. N. & Moore, F. H. (1980). Acta Cryst. B36, 2893– 2897.